Scenario tree approximation and risk aversion strategies for stochastic optimization of electricity production and trading

نویسندگان

  • Andreas Eichhorn
  • Holger Heitsch
  • Werner Römisch
چکیده

Dynamic stochastic optimization techniques are highly relevant for applications in electricity production and trading since there are uncertainty factors at different time stages (e.g., demand, spot prices) that can be described reasonably by statistical models. In this paper, two aspects of this approach are highlighted: scenario tree approximation and risk aversion. The former is a procedure to replace a general statistical model (probability distribution), which makes the optimization problem intractable, suitably by a finite discrete distribution. Our methods rest upon suitable stability results for stochastic optimization problems. With regard to risk aversion we present the approach of polyhedral risk measures. For stochastic optimization problems minimizing risk measures from this class it has been shown that numerical tractability as well as stability results known for classical (non-riskaverse) stochastic programs remain valid. In particular, the same scenario approximation methods can be used. Finally, we present illustrative numerical results from an electricity portfolio optimization model for a municipal power utility.

برای دانلود متن کامل این مقاله و بیش از 32 میلیون مقاله دیگر ابتدا ثبت نام کنید

ثبت نام

اگر عضو سایت هستید لطفا وارد حساب کاربری خود شوید

منابع مشابه

Medium Term Hydroelectric Production Planning - A Multistage Stochastic Optimization Model

Multistage stochastic programming is a key technology for making decisions over time in an uncertain environment. One of the promising areas in which this technology is implementable, is medium term planning of electricity production and trading where decision makers are typically faced with uncertain parameters (such as future demands and market prices) that can be described by stochastic proc...

متن کامل

Stochastic Optimization of Electricity Portfolios: Scenario Tree Modeling and Risk Management

We present recent developments in the field of stochastic programming with regard to application in power management. In particular we discuss issues of scenario tree modeling, i.e., appropriate discrete approximations of the underlying stochastic parameters. Moreover, we suggest risk avoidance strategies via the incooperation of so-called polyhedral risk functionals into stochastic programs. T...

متن کامل

Comparison of Portfolio Optimization for Investors at Different Levels of Investors' Risk Aversion in Tehran Stock Exchange with Meta-Heuristic Algorithms

The gaining returns in line with risks is always a major concern for market play-ers. This study compared the selection of stock portfolios based on the strategy of buying and retaining winning stocks and the purchase strategy based on the level of investment risks. In this study, the two-step optimization algorithms NSGA-II and SPEA-II were used to optimize the stock portfolios. In order to de...

متن کامل

Stochastic Optimization of Demand Response Aggregators in Wholesale Electricity Markets

This paper proposes a stochastic framework for demand response (DR) aggregator to procure DR from customers and sell it to purchasers in the wholesale electricity market. The aggregator assigns fixed DR contracts with customers based on three different load reduction strategies. In the presented problem the uncertainty of market price is considered and the risk of aggregator participation is ma...

متن کامل

Multi-Stage Stochastic Electricity Portfolio Optimization in Liberalized Energy Markets

In this paper we analyze the electricity portfolio problem of a big consumer in a multi-stage stochastic programming framework. Stochasticity enters the model via the uncertain spot price process and is represented by a scenario tree. The decision that has to be taken is how much energy should be bought in advance, and how large the exposition to the uncertain spot market, as well as the relati...

متن کامل

ذخیره در منابع من


  با ذخیره ی این منبع در منابع من، دسترسی به آن را برای استفاده های بعدی آسان تر کنید

برای دانلود متن کامل این مقاله و بیش از 32 میلیون مقاله دیگر ابتدا ثبت نام کنید

ثبت نام

اگر عضو سایت هستید لطفا وارد حساب کاربری خود شوید

عنوان ژورنال:

دوره   شماره 

صفحات  -

تاریخ انتشار 2008